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We consider the motion of a point particle (billiard) in a uniform gravitational 
field constrained to move in a symmetric wedge-shaped region. The billiard is 
reflected at the wedge boundary. The phase space of the system naturally divides 
itself into two regions in which the tangent maps are respectively parabolic and 
hyperbolic. It is known that the system is integrable for two values of the wedge 
half-angle 01 and 02 and chaotic for 01 < 0 < 02. We study the system at three 
levels of approximation: first, where the deterministic dynamics is replaced by a 
random evolution; second, where, in addition, the tangent map in each region is . 
replaced by its average; and third, where the tangent map is replaced by a single 
global average. We show that at all three levels the Lyapunov exponent exhibits 
power law behavior near 01 and 02 with exponents 1/2 and 1, respectively. 
We indicate the origin of the exponent 1, which has not been observed in 
unaccelerated billiards. 

KEY WORDS:  Lyapunov; scaling; chaos; nonlinear dynamics; billiard; 
gravity; random matrix. 

1. I N T R O D U C T I O N  

Recently, Benettin (1) has studied the behavior of ergodic billiards near 
parameter values for which the system is integrable. The boundary 
geometry depends continuously on the parameter. An example of such a 
system is the stadium, where the parameter e is the length of the parallel 
edges. When g = 0 the boundary is a circle and the billiard is integrable. 
For e > 0 ,  the system is known to be a K-system. (2'3) An interesting 
question concerns the asymptotic dependence of dynamical properties on 

1 Department of Physics, Texas Christian University, Forth Worth, Texas 76129. 
2 Department of Mathematics, SUNY College at New Paltz, New Paltz, New York. 

1299 

0022-4715/88/1200-1299506.00/0 �9 1988 Plenum PuNishing Corporation 



1300 Mil ler and Ravishankar 

the parameter as it vanishes. For a general class of two-dimensional 
billiards it is known from numerical studies that the maximal Lyapunov 
exponent scales as e 1/2 as e--,0. (1~ This result was recently proved by 
Wojtkowski. (41 In each case, for e>0, the action of the dynamics on the 
tangent space is either purely hyperbolic or hyperbolic and parabolic in 
disjoint regions. For e = 0, the action is parabolic. Two remarkable proper- 
ties of the scaling law are its apparent universality and robustness. For 
each billiard, both a Markovian model and a crude "mean field" 
approximation yield the same scaling relationship. 

This paper concerns the dynamics of a two-dimensional billiard in a 
uniform gravitation field. Its principal properties were explored earlier by 
Lehtihet and Miller. (51 In common with the biliards mentioned above, the 
boundary depends on a parameter, but it is integrable for two of its values, 
01 and 02. For 01<0<02 numerical experiments suggest K-system 
behavior with positive maximal Lyapunov exponents. Here, also, the phase 
space splits into two components, one where the tangent map is hyperbolic, 
and the other where it is parabolic. The hyperbolicity vanishes at 0~ and 
02. The maximal Lyapunov exponent scales differently at each integrabte 
parameter value, as 10-01J ~/2 near 0~, and as 10-021 near 02. (5) In this 
study, the dynamical features which produce scaling are investigated: 
It is demonstrated that the scaling survives three levels of simplifying 
approximation which progressively ignore dynamial structure, thus 
illustrating the robustness of the scaling. 

The construction of a rigorous proof of the existence of ergodic com- 
ponents in the phase plane and the scaling of Lyapunov exponents may be 
possible using the methods of Wojtkowski. (4) However, the inclusion of 
acceleration introduce the additional complicating feature of parabolic 
orbits. We hope to have more to say about this in the future. Here we try 
to understand the basic dynamical features which produce scaling of the 
Lyapunov exponent by studying a stochastic model at two levels. 

We study the motion of a point particle in a uniform gravitational 
field constrained to move in a symmetric wedge-shaped region. The particle 
is reflected at the wedge boundary, that is, the component of the velocity 
tangential to the wedge boundary is preserved while the normal component 
is reflected. Between collisions with the boundary, the particle is uniformly 
accelerated parallel to the wedge bisector (see Fig. 1). 

When the energy is fixed, the phase space for this system is three 
dimensional. If we consider the Poincar6 section obtained by the return 
map to the wedge boundary, we obtain a two-dimensional system. The two 
dimensional phase space, which turns out to be a bounded region of the 
plane, can be divided into two disjoint regions (A and B). Region A con- 
sists of those phase points for which the next collision of the particle is with 
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Fig. 1. Configuration space of the symmetric wedge. 0 is the half-angle, g indicates the direc- 
tion of acceleration, and er and e0 are unit vectors for polar coordinates representing the 
billiard's position r. The A (B) labels a trajectory which collides with the same (opposite) side. 

the same side of the wedge (see Fig. 2). Region B is the complement of A 
and the vertex, i.e., it results in a collision with the opposite side. In a 
recollision, the normal component of the velocity is conserved, leading to a 
particularly simple form of the return map in region A. Similar simplifying 
features are absent in region B except at 0 =  01 = ~/4 and 0 = 02= ~/2, 
where 0 is the wedge half-angle. Consequently, the return map in the B 
region is highly nonlinear. It is possible to construct coordinate systems 
where both A and B return maps are area preserving. (5~ 

It can be shown that the system is integrable at 0~ and 02. The earlier 
numerical study (5) demonstrated coexisting quasiperiodic and chaotic 
regions when 0 < 0 < 01 and total chaos when 01 < 0 < 02. In this paper we 
study the scaling properties of the maximal Lyapunov exponent (2) in the 
chaotic region using three levels of approximation. First, we replace the 
deterministic return map by a stochastic model where each successive point 
in the phase plane is selected at random. Second, in addition to selecting 
phase points at random, we replace the tangent map in each region by its 
respective regional average. Third, we average the tangent map over the 
whole phase space to obtain a single constant matrix. 

Level one is investigated numerically. In the second level, in addition 
to the numerical study of scaling, bounds for the Lyapunov exponents are 
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Fig. 2. The (x, z) phase space. A (B) labels the region from which trajectories collide with 
the same (opposite) side. 

derived. In the third, the system is modeled by a single hyperbolic matrix. 
Both of the numerical studies, and the maximal eigenvalue of the hyper- 
bolic matrix derived for level three, reproduce the same characteristic 
exponents as the original deterministic dynamical system. Upper and lower 
bounds at 02 and an upper bound at 01 also yield the same scaling, and the 
lower bound derived at 01 is consistent with the system behavior. 

The surface of section and tangent map is defined in Section 2. 
Numerical experiments and results are described in Section 3. In Section 4 
the average Jacobian matrices required for levels two and three are presen- 
ted, and theorems required for establishing bounds on the Lyapunov 
exponent are proved. 

2. D E S C R I P T I O N  OF T H E  M O D E L  

A convenient, area-preserving set of coordinates for the Poincare 
surface of section is the component of the velocity tangent to the wedge 
boundary x and the square of the normal component z .  The return maps 
for the A and B regions in this coordinate system, denoted hereafter by Ta 
and Tb, respectively, were derived by Lehtihet and Miller. (s) 

The image of x o, z o under Ta is 

X 1 = X 0 - -  2 cot 0 x/Zo 
(1) 

Z 1 ~ Z  0 
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whereas under T b we find 

xl  : ( x / Z o - x / z l )  cor O -  xo 
(2) 

zl = 2 sin 20 + 2~ (x/zo - Xo tan 0) 2 - z0 

where 0 is the wedge half-angle, and ~ = ( 1 - t a n 2 0 ) / ( 1  + t a n 2 0 )  2. The 
phase space is shown in Fig. 2 for a fixed value of the angle. 

It is straightforward to compute the tangent map (Jacobian) for each 
region. In A 

whereas in B, 

cot 0 (~Z 1 cot 0 cot 0 0Zx 
1 

jb = 2x/Zl 0Xo 2x/z~ 2x/Zl c3g~ (4) 

- 43 tan 0 (x/Zo - Xo tan 0) 2 ~ (x /Zo-  Xo tan 0) - 1 
zo 

Since we know (5~ that x /Zo-Xo tan 0 > 0 in the B region, and ~. < 0 for 
~/4 < 0 < z~/2, it is easy to see that Tr Jb < --2 and det Jb = 1. This shows 
that Jb is reflection hyperbolic. It is clear that Ja is parabolic. This means 
that the action of Ja is to shear the tangent vector, while Tb acts hyper- 
bolically. 

We are interested in characterizing the chaoticbehavior  of the system. 
The fact that the action of Jb on the tangent space is hyperbolic when 
re/4 < 0 < ~/2 gives us a clue as to why chaotic behavior is observed 
numerically, but it is by no means sufficient. Tile presence of asymptotic 
instability depends on how the tangent vector positions itself with respect 
to the local expanding direction along the orbit. 

3. N U M E R I C A L  RESULTS 

Three numerical experiments were performed. First, the Lyapunov 
exponent was computed for the original dynamical system, then for a 
Bernoulli process defined on the same manifold with the same locally 
defined Jacobian matrix (described above as level one), and finally, for the 
two-state Bernoulli process (A or B) using the average Jacobian matrix for 
each region (level two), respectively. It is important to understand that, in 
common with billiards, the exponent is defined for the discrete time map 
[see (1) and (2)], and not the continuous time flow. Thus, 2 is given by 

n 

2 n = ( 1 / n ) ~ l n l J n t ~ t ,  2 =  lim 2n 
1 ~ t ~ o o  
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where Jr,, is the Jacobian matrix and tn is a unit vector in the tangent space 
after n iterations. 

In all cases the numerical calculations were carried out in double 
precision on an AT&T 3B2/400 computer running CFP  (AT&T's floating 
point C compiler). The pseudo-random-number generator drand48(), 
which is suplied with the compiler, was used to generate random numbers 
on the unit interval in levels one and two. The behavior of 2 was examined 
at the following angles near 45~ 46 ~ , 45.1 ~ , 45.01 ~ , 45.001 ~ , 45,0001 ~ and 
at 89 ~ , 89.9 ~ , 89.99 ~ , and 89.999 ~ near the integrable point at 90 ~ . 
Successive values of )~, were computed via a running average, i.e., 

2n+~ = (n2~+ln  [Jn+ltn+ll)/(rt+ l )  

The values of 2n were sampled every 105 iterations. With one exception, the 
criteria for termination was agreement between two successively sampled 
values (separated by 105 iterations) to within one part in 105 . The length of 
the runs required to achieve this accuracy varied considerably. In the first 
case, where the true system dynamics was employed, correlations extended 
the duration considerably. However, in all cases, if 0 was close to 90 ~ very 
long runs were required. This occurs because T0, the hyperbolic portion of 
the transformation, is hardly ever invoked in the neighborhood of 0 = 90 ~ 
as the wedge is nearly flat and the billiard usually recollides on the same 
side. It is the essential reason that the Lyapunov number vanishes more 
rapidly near 90 ~ than near 45 ~ . The exception (see above) occurred at 
89.999 ~ for the true dynamics, where the program was stopped after 
337,3000,000 iterations, as the value of )~, was steady and the cpu time 
excessive. 

It is necessary to keep in mind that the sequence 2n does not converge 
uniformly. Because the process is probably a K system for the true 
dynamics, and definitely Bernoulli for the first two levels of approximation, 
the sequence {2n} converges in the sense of the law of large numbers. Thus, 
agreement to five places between two successively sampled value of 2, does 
not guarantee the validity of the first five figures of 2. Rather, they suggest 
the validity of approximately three figures or better. The choice of the 
sampling separation of 105 iterations, as well as the five-figure criteria for 
accuracy, were a compromise which was arrived at by experimentation. 
Shorter sampling times especially restulted in lack of satisfactory numerical 
reproducibility of the results due to the higher probability of a chance 
coincidence. Longer sampling separations and more restrictive criteria for 
termination simply required more cpu time than we could justify, and did 
not significantly alter the data. 

Values of the computed Lyapunov number at each half-angle, 10-0i l ,  
1Oglo(2), and A loglo(2), the difference between two successive values of 
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Table I. Lyapunov Exponents from Numerical Iteration for the 
Original Dynamical System a 
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L y a p u n o v  l o g ( L y a p u n o v  A l o g ( L y a p u n o v  

0 AO exponen t  exponen t )  exponent )  

46.0000 1.0 2.652504e- 1 - 0.576 0.480 

45.1000 0.1 8.782750e-2 - 1.056 0.505 

45.0100 0.01 2.746759e-2 - 1.561 0.515 

45.0010 0.001 8.400783e-3 --2.076 0.500 

45.0001 0,0001 2.656793e-3 - 2.576 - -  

89.0000 1.0 2.684556e-2 - 1.571 0.946 

89.9000 0.1 3.038617e-3 --2.517 1.014 

89.9900 0.01 2.945342e-4 - 3.531 1.001 

89.9990 0.001 2.9385e-5 --4.532 - -  

a AO is 10 - 0~1 and  A loglo 0 is the decrement  of loglo 0 for each successive pa i r  of 0 values. 

loglo(2), are listed in Table I-III  for the true dynamical system, the level 
one stochastic approximation, and the level two approximation, respec- 
tively. Because each successive value of l 0 -  0i[ is reduced by a factor of 10, 
in the scaling region A loglo(2) should equal/~, the characteristic exponent. 
The numerical values are consistent with/~ = 0.5 at 0 = 45 ~ and/~ = 1.0 at 
0 = 9 0  ~ 

Table II. Lyapunov Exponents from Numerical Iteration for the Case 
Where  the Position in Phase Space is Chosen Completely at Random ~ 

L y a p u n o v  log ( L y a p u n o v  A log ( L y a p u n o v  

0 A0 exponen t  exponen t )  exponent )  

46,0000 1.0 2.83765e-I - 0 . 5 7 6  0.480 

45.1000 0.1 9.542275e-2 - 1.020 0.492 

45.0100 0.01 3.078268e-2 - 1.512 0.496 
45.0010 0.001 9.808095e-3 - 2.008 0.499 

45.0001 0.0001 3.112281e-3 - 2 . 5 0 7  - -  

89.0000 - 1.0 3.005382e-2 - 1.522 1.005 
89.9000 - 0 . 1  2.974898e-3 - 2 . 5 2 7  1.001 

89.9900 - 0.01 2.965064e-4 - 3.528 1.024 

89.9990 - 0.001 2.802369e-5 - 4.552 - -  

'~ AO is I0--  Oil and  d log10 0 is the decrement  of log10 0 for each successive pa i r  of 0 values. 

822/53/5-6-19 
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Lyapunov Exponents from Numerical Iteration of the 
" M e a n "  Dynamical System ~ 

Lyapunov log(Lyapunov A log(Lyapunov 
0 AO exponent exponent) exponent) 

46.0000 1.0000 2.423685e-1 -0.616 0.501 
45.1000 O. 1000 7.639950e-e -- 1.117 0.500 
45.0100 0.01 2.416116e-2 -- 1.617 0.500 
45.0010 0.001 7.644548e-3 -- 2.117 0.499 
45.0001 0 . 0 0 0 1  2.419240e-3 --2.616 - -  

89.0000 -- 1.0 2.929"141e-2 -- 1.533 1.001 
89.9000 -- O. 1 2.922004e-3 - 2.534 0.993 
89.9900 --0.01 2.972168e-4 - 3.527 1.026 
89.9990 -0.001 2.801283e-5 -4.553 - -  

a The local Jacobian matrix is replaced by its average in region A or in region B. The AO is 
1O- 0il and A loglo O is the decrement of log~o 0 for each successive pair of 0 values. 

4. THEOREMS AND COMPUTATIONS 

Let kt a and #b denote the measures of the A and B regions in the (x, z) 
coordinates. The average Jacobians in each region are denoted by Xa 
and Xb : 

Xa = (1/#,~) J(x, z) dpa 

(5) 

xb = ( l /m)  J(x, z) d~ 

where the integral of a matrix is taken to be the matrix obtained by 
integrating each element. Note that there is no guarantee that the average 
Jacobian Xb will be hyperbolic. With some effort, the integrals can be 
analytically evaluated and are given below: 

1 - -  7 z / 2 + a r c s i n { c c [ ( ~ 2 +  1 ) ( ~ 2 + 4 ) ] 1 / 2 }  

X a = ~ 

0 1 

(6) 

- 1  ~ ~-sT~arcsin 2 + 1 / 1  

-~lt~ 8~ 
~b 3# b 1 

(7) 
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where 

/~b = (4/3)/(~ 2 + 1)1/2, #a = 4/3 - #b (8) 

and ~ = t a n 0 .  We can easily check that Xb is hyperbolic and that 
ldetXbl > 1. That is, Xb has two real eigenvalues 21 and 22, where 
0 < t;~11 < 1 < I&l, 

In the level 2 mean field approximation the phase point moves 
independently between regions A and B; the probability of being in each 
region is proportional to its area. Thus, we have replaced the original 
dynamical system by (f2, P, S), where (2 = {a, b} z is the set of infinite 
sequences in symbols a and b. We write co = {mi: - o o  < i <  oo} eg2 and we 
can interpret co o = a or b to mean that the system starts in the A or B 
region, respectively. The evolution of the system is modeled by the shift 
mapS.  That is, (Sco)i=coi+l. P is the Bernoulli product probability 
measure, which assigns P(coi = b) = #J (#a  + l a b )  = p.(6) 

We are interested in obtaining information about the maximal 
Lyapunov exponent of the system as a measure of chaos. In level 2 the 
average action of the tangent map in the A and B regions is given by Xa 
and Xb, respectively. We derive bounds for the maximal Lyapunov 
exponent of independent products for a general class of matrices 
parametrized by ~, of which the Xa and X b in our problem are particular 
examples. In our particular example, the parameter e represents 0 - 0 1  near 
01, and 0 2 - 0  near 02. 

The bounds are obtained by establishing the existence of an invariant 
cone. The existence of a family of invariant cones was used to obtain the 
rigorous results for planar billiards by Wojtkowski. (4) 

Benettin (1) also obtained upper and lower bounds for the maximal 
Lyapunov exponent for products of 2 x 2 random matrices. He showed that 
the bounds are of the form Ce m, where C is a constant, by using the 
existence of an invariant cone. His results were obtained without assuming 
independence. This was possible because, for the class of matrices he con- 
sidered, the dilation of vectors in the invariant cone is bounded from below 
by (1 + C~1/2). In our model, the lower bound for the dilation in the cone is 
unity. Therefore, we need to known the asymptotic fraction of times the 
vectors in the cone spend away from the region where the dilation is too 
small to produce the expected scaling. This canot be assumed without some 
knowledge of the ergodic properties of the sequence of random matrices. 

Let 

kc( ) >0  (9) 
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be a class of 2 x 2 real matrices with the following properties: 

1. Xb has two distinct real eigenvalues, 0 < 21 ~< 1 ~< 22. 

2. a(~)= 1 + a o ~ +  O(e), a o>0 .  

3. b,c<~O. 

It is easy to see that , t2=a+(bc) 1/2, ,t 1 = a - ( b c )  1/2, and the eigen- 
directions for 22 and 21 have slopes - ( c / b )  m and (c/b) m, respectively. Let 

Xa(~)= , ~ > 0  (101 

be a class of 2 x 2 real matrices, where d(e)/> 0. 
Consider the product of identically distributed, matrix-valued, 

independent, Bernoulli random variables {X~(e): 1 ~< i <  oo}. That is, con- 
sider products of the form Xn(E)...Xz(E)XI(~,), where X~=X~ with 
probability 1 -  p, and Xb with probability p. Let 

2(e)=  lira ( l /n) In  IIY,(e).-.Xl(e)l[ (11) 

where [IXl[ = sup{ [Xzl: z ~ R2, [z[ = 1 }, [zl being the Euclidean norm. 2 is 
called the maximal Lyapunov exponent and its existence in our case is 
guaranteed by Oseledec's multiplicative ergodic theorem. (7~ 

We first derive a formula for the lower bound of 2 which will be used 
in the theorems that follow. Let Z0 = z be an arbitrary unit vector in R 2. 
Define Z , =  [ X , . . . X , z ] / I X n . . . X l Z  I, n =  1, 2 ..... Since {Xi: 1 ~<i< oc} is 
an independent sequence of random variables, {Zn} is a Markov chain, 
with the unit circle (S 1) as its state space. Note that the Markov chain 
{Zn} discribes the random evolution of the direction of a unit vector 
starting from z. The one-step transition probability P(x, .) for {Zn} is a 
discrete probability measure. For  every x ~ S 1, P(x, . )  assigns a mass p to 
XbX/IXbxl and a mass 1 - -p  to Xax/[Xaxl. Let v be a stationary measure 
for the Markov chain, i.e., ~ v(dx) P(x, c) = v(c) for all measurable subsets c 
of $1. (7) We observe that in [X, . . .XIz[ = Z l ~ i ~ n l n  IXiZi_I[. It follows 
from Birkhoff's ergodic theorem that, for v a.e. z ~ S 1, 

lim (l/n) In IX~-"~rlZl 
n ~ o o  

= lim(1/n) ~ ln[X~Z~ 1[ 
n~oo l~i<~n 

= P f$1 In IXb ~l d~(y)  + (1 -- p) f~ In tX~ y[ dv(y) (12) 
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Thus, we have 

2>~pfsilnlXbyl dv(y)+(1-p)f~lnIX~y[ dv(y) (13) 

where the inequality becomes an equality if there is a unique stationary 
measure for {Zn}. We refer the reader to the paper by Furstenberg and 
Kifer (s) for the derivation of a general version of this result. 

The product Xn---X1 leaves the cone ae formed by the expanding 
direction and the x axis invariant. Moreover, given a vector v e R  2, 

X~.- .  XI v e a e for some n < oo almost surely. From these two observations, 
we conclude that any stationary measure v for { Z , }  has to be supported 
on the arcs a = S  1 ( '16 e (see Fig. 3). Therefore our formula for the lower 
bound becomes 

2>~pf, lnlXbyl dv(y)+(1-p)f ln IX~y[ dr(y) (14) 

In Theorems 1 and 2 we choose matrix elements with similar 
asymptotic behavior to that encountered near 02 and 01, respectively. The 
only difference is that the matrices we consider for region B are simply 

Z 

(5 

i; 
i I 

,/ 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

i I 

i I 

i I 

i I 
I • 

(5 

Fig. 3. Tangent space, showing the invariant cones. 
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hyperbolic, whereas the actual matrices are reflection hyperbolic. This is a 
minor difference, which does not affect the value of 2. 

T h e o r e m  1. Let l i m ~ o b ( e ) = 0 ,  l i m ~ o C ( e ) = c o < O ,  d ( e ) =  
doe + o(e), do < O, p(e) = poe + o(e). Then lim~ ~o[ln  2(e)/ln e] = 1. 

Proof We obtain our result by establishing upper and lower bounds 
with appropriate asymptotic properties. 

(i) Upper bound: Since [[XY[I ~< [IX[] 1[ Y[[, we have 

(1/n)ln []X,,"'XIH ~<(1/n) ~ In IIY=l/ 
l <~i<~n 

= (n./n) in [IXatl + (nb/n) In [IX~II 

where n a and n b are the numbers of X~ and Xb matrices in the string 
Xn. .-X1.  From the law of large numbers it follows that as n--, 0% 
l im(nJn)= 1 - p  and lim(nb/n)= p. Therefore, from Eq. (11), we obtain 

)o ~< p In IlXbll + (1 - p )  In lIX~H (15) 

With a little effort, it can be shown that as e ~ O, oo > lim [[XbJ[ > 1 and 

IlXa(8)ll ~< 1 + Id(e)l + d2(s 

From these observations it follows that there exists a k l >  1, p~ >0 ,  
d l > 0 ,  and e 0 > 0  such that if e<eo ,  then k l > [ l X b [ ] > l ,  p(e)<-..ple, 
IIX, II <~ 1 + die. Thus, 

)~ ~< 8(p I I n k  I + dl) (16) 

L o w e r  B o u n d .  Starting from Eq. (14), we construct a lower bound 
for 2 by first showing that on a subset al of a, as e--, 0, l im[lnXbzl]  > 1 
and v ( a l ) > 0 ,  which imply p S l n  [Xby[ dv(y)>Cp,  where C > 0 .  Thus, we 
will show that the lower bound scales like e as e--+ 0. 

As e ~ 0 the slope of the expanding direction approaches - ~ .  Since 
X b is limiting to a lower triangular matrix as e ~ 0, we can easily check 
that 

l imlXb(e)v l>[ l+(c~/2)]  m for all v s a l  

where 

~1 = {yea :  - 2  -1/2 ~< slope ofv~<0} 
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Therefore  there exists an e~ such that  if e < 5~, then 

l n lX b z l> ln [ l+(c2 o /2 ) ]m>O for all 
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zeal (17) 

We now est imate v(an). Since )Ca is an upper  t r iangular  matr ix  and 
d(e) > 0, Xa rotates  vectors in the counterclockwise direction. We show that  
(X~)% e an for all v e ~r if n is large enough. Let m(v) be the slope of the 
vector  v in R 2. Then  

m[(Xa)"v] = m(v)/[1 + ndm(v)] (18) 

F r o m  this it is clear that  if nd< - , , / 2 ,  then (Xa)"vecrn if yea .  Since 
d(5) = doe + o(5), there exists an e 2 > 0 such that  if e < 52, then d(e) < do5/2. 
Let 

no(e) = inf{k e N: k [dole > 2~/2}  

Clearly, (Xa)'~ e al for all v e cr. Let 7 = 2\ /2 / [d0i ;  then, as e ~ 0, 

l im[1 - p(5)]  ~/' = e -rp~ > 0 

Therefore,  there exists an e3 > 0 such that  if e < e3, then 

[-1 - p (e ) ]  "~ > (e-~P~ > 0 

Since (Xa)n~ ~ an for all v e or, 

Pn~ al)>(e-~P~ for all y e a  

where P" is the n-step transi t ion probabi l i ty  for the M a r k o v  chain {Z.} .  (6~ 
Therefore,  

v(crl) = f P"~ ~rl) dr(x) > (e-'tP~ (19) 

Since In [Xbz[ > l n [ 1  + c~/2)] ~/2, we have shown that  

I In IXb Yl dr(y) > In [  1 + (c~/2)] 1/2(e-~P~ = L 

for all e < e', where e' = min{s1, e2, 53 }. Therefore,  2 >1 pL = 
Lpoe+O(e). Q.E.D. 

T h e o r e m  2. As 5 ~ 0 ,  let l i m b ( 5 ) = b  o < 0 ,  l i m d ( 5 ) = d o < 0 ,  and 
c(e) = Co5 + o(e), Co < 0. Then  there exist kl  and k2 > 0 such that  

k t 5 + o(e) <~ 2(e) ~ k2 el/2 + O(e 1/2) (20) 
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Proof. We first observe that the slope of the expanding direction 
goes to zero as e ~ 0. Therefore the invariant cone a collapses onto the x 
axis as e - - 0 .  Let IlXll~=sup{[Xv]: v~a}. Next, we observe that, given 

> 0, for a.e. co (sequence of X~), there exists a k = k(e)~ N such that 
XkXk_I""XIv~a~ for every v~R 2. From this it follows that, if n>k, 
HXn ' '  ' X l l [  ~ C]lJ(n "" " X k + l  [la, where C > O  is a constant. Therefore 

lim ( I /n ) In  JlX~...X~ll 
n ~ o o  

~< lim (1/n)lnllXn...x~+llla+ lim (1/n)lnC 
n ~ o ~  n ~ o o  

= lim [1/(n-k)]lnlIX,.. .Xk+lllo 
n - - k ~ o ~  

= p l n  ]lXbH~ + ( 1 -  p) ln llXal[~ 

Since the slope of the expanding direction is 

[C(~)/b(c.)'] 1/2 : C1 ~1/2 ..~ O(~1/2), 

it is easily verified that 

JIXa]l~ ~< 1 + cle 1/2 + o(~ m) 

and 

Therefore, 

c ~ > 0  

(21) 

Since 

(22) 

(23) 

2~<pln  IPXJ~ + ( 1 - p ) l n  IFXall~ (26) 

we have established the upper bound. 

L o w e r  B o u n d .  It is easy to show that 

IIX~(1, 0)1t 2 = ~.i22 + (1/4) sec 2 q, (22 - 2 1 )  ~ 

where ~0 is the angle between the expanding direction and the x axis. From 
this we see that 

IIXb(1, O)H=I+k~+o(E), k > O  (27) 

IIXbH o- = 1 ql- s -{- 0(81/2)  ( 2 5 )  

)~2(8)  = a(E) + (bc) 1/2 = 1 + c2e 1/2 + o(el/2), c2 > 0 (24) 
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since IIXbVll > IIXb(1, 0)11Vv~, we have 

f l n  IIXbvll dv(v)>~fln [IX~(1, 0)ll dr(v) = ln[1  +ke+o(e)] (28) 

From this, the lower bound stated in the theorem folows. Q.E.D. 

In section 2 it was pointed out that 2 scales as gl/2 near 01. This is 
reflected in the behavior of the upper bund derived above. A more detailed 
investigation of v is being developed which yields a more accurate lower 
bound which also scales as e 1/2. 

We conclude this section with a discussion of the level3 
approximation, which replaces the tangent map everywhere by a single 
matrix X, the average of the Jacobian matrix over the whole phase plane. 
The average matrix can be evaluated directly from Eqs. (6) and (7) using 

X= (#aX,, + #bXb)/(,Ua + #b) (29) 

It is easy to show that - X  is hyperbolic with largest eigenvalue 22= 
1-2~ + (bc) ~/2, where b and c are the off-diagonal elements of - X .  Near 
0 = 01 and 0 = 02 it follows that 

22=l+kl~[1/2+o(l~lt/2), k > 0  (30) 

Since 

I~l~-.kl(O-O1)+o(O-O1), k l > 0  as 0-+01 

I~l=k2(O-O2)Z-ko[(O-02)2], k 2 > 0  as 0---+02 

we obtain the scaling predicted by the numerical experiments in all other 
levels. 

5. C O N C L U D I N G  R E M A R K S  

We have shown that the scaling property of the Lyapunov exponent 
near each parameter value at which the system is integrable is preserved by 
three levels of approximation. In levels 1 and 2, a stochastic process is sub- 
stituted for the true system dynamics. Levels 2 and 3 may be thought of as 
man field theories, in which the tangent map is replaced by an appropriate 
average. Even though the crudest of the models, namely level 3, gives us 
the correct scaling behavior, we have quite a bit more to gain by consider- 
ing level 2. Here we can clearly see that the power law scaling exponent of 
1.0 is due to the fact that the region of the phase space with the hyperbolic 
tangent map (region B) vanishes as 0 -+ 02. This does not happen in any of 

822/53/5-6-20 
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the planar billiards considered by Benettin, where a power law exponent of 
1/2 is observed. We have demonstrated that the mean field theory con- 
sidered in this paper has enough structure, especially because of the fact 
that the tangent maps maintain their noncommutativity, to provide 
qualitative information concerning the behavior of Lyapunov exponents 
near values of a parameter where the system is integrable. 

The robustness of the scaling laws demonstrated here suggests that the 
stable and unstable manifolds of the original system may not be tangent 
and thus may be worth investigating numerically. (9) 
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